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Abstract – The tool portfolio of a plant refers to the makeup, 
in quantity and type, of processing machines in the plant. 
Portfolio planning is a multi-criteria decision-making task 
involving trade-offs among investment cost, throughput, 
cycle time and risk. In this paper, an economic decision 
model is first presented for optimal configuration of 
portfolio and to determine optimal factory loading. If plants 
are closely located or have a  twin-fab design, portfolio 
planning at multiple plants can be integrated to enhance 
the overall effectiveness of portfolios. A novel methodology 
for arbitrating capacity backup between multiple plants is 
described in the second part. Finally, robust configuration 
of portfolio in a dynamic demand environment is addressed. 
Industry data have been utilized to run through the 
developed methodologies. 

1. INTRODUCTION 

The tool portfolio of a plant refers to the makeup, in 
quantity and type, of processing machines in the plant. 
What portfolio a plant should have is determined by the 
state and future technology trends of process, machine, 
product and product demands. Because of the dynamic 
environment in the semiconductor industry, there is a high 
risk of under- or over-capacity and mismatch between 
actual demands and the right types of capacity. Tool 
portfolio planning is a task that has tremendous bearing on 
manufacturing efficiency.  

There are three important issues in portfolio planning. They 
are configuration design, performance evaluation and risk 
analysis. Static modeling and queuing modeling are 
commonly used to evaluate capacity requirements and 
performance. A simple method of portfolio planning uses a 
static capacity model. More advanced methods might use 
queuing analysis of one form or another [1,2,4]. To 
configure a portfolio, marginal analysis of performance 
measures is usually applied to adjust tool quantities [1,4]. 
Because of the uncertainties in product demand, there is 
sometimes a need to address the robustness of tool portfolio 
under multiple demand scenarios. This problem was 
addressed in [3] by finding out the tool groups whose 
workload is sensitive to the changes in product mixes.  

Portfolio planning is a multi-criteria decision task involving 
trade-offs among investment cost, throughput and cycle 
time. Not only that there are more than one portfolios that 
will satisfy a specified set of production goals, but also that 
each portfolio can be operated in a multitude of load 

scenarios, yielding various combinations of performance 
measures. The treatment of this trade-off analysis has not 
appeared in the literature and is the focus of this paper.  

This paper addresses the optimization and economic 
analysis of tool portfolio.   In Section 2, a procedure to 
generate a multitude of feasible portfolios is described. In 
Section 3, an economic decision model is presented for 
optimal configuration of portfolio and to determine optimal 
operation loading.  In Section 4, a novel methodology for 
capacity sharing between plants is described. Finally, the 
robustness of portfolio under dynamic environment is 
addressed in Section 5, and conclusions can be found in 
Section 6. 

2. GENERATION OF THE SOLUTION SPACE 

Figure 1 is a flow diagram for a two-stage procedure we use 
to generate the solution space of portfolio. A static capacity 
model is first applied to generate an initial solution. In the 
second stage, the initial portfolio is evaluated using a 
queuing model to estimate its performance in throughput, 
flow time, and utilization. The portfolio is then modified by 
increasing the machine quantity of the bottleneck tool group. 
This improvement process continues for a number of 
iterations until all performance requirements are met. 
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Figure 1. Generating a solution space of efficient portfolios 

In the second stage, there could be multiple views of what 
exactly the bottleneck is. The available time of a tool can be 
divided between regular utilization ( ρ ), incapacitation 

utilization ( incρ ), and idleness. In this study, three 
bottleneck indicators have been compared for effectiveness. 
They are utilization (regular plus incapacitation), queuing 
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delay, and remnant capacity (rc), where the remnant 
capacity of a tool group g is defined as: 
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A series of portfolios can be generated by using each 
indicator. Figure 2 shows that the queuing delay and 
remnant capacity indicators are more cost-effective than the 
utilization indicator.  
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Figure 2. Effectiveness of different bottleneck indicators 

Each point in Figure 2 represents a portfolio. Because a 
plant with a certain portfolio can be loaded differently, its 
operation performance actually would vary over a range. 
Figure 3 shows the range of performance for twenty 
portfolios of Figure 2. Each curve represents the operation 
options for one portfolio. These curves are called option 
curves (OC) in this paper and the space that all option 
curves lie in, i.e., the 2-dimentional Euclidean space 
depicted in Figure 3, will be called the option space. 
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Figure 3. Option curves in the option space 

3. A DECISION MODEL FOR OPTIMIZATION 

In this section, we will present a methodology to determine 
the optimal portfolio based on performance measures of 
cycle time, throughput, and investment cost. While the 
value of throughput is relatively easy to quantify, the 
benefit of cycle time is very subjective and depends on 
business situation. In Economics, utility function is a 
framework of analysis that is used to express the change in 

perceived value that is assigned to goods as its consumption 
quantity increases. We use the following functional forms 
to model the utility of throughput and cycle time (Figure 4).  

0C
throughputxa x  where e1)x(fthU =−== ⋅−      )(  … (2) 

RPT
cycle timewhere  yyb)y(gctU =⋅==    ) )( arccos (sin )(  … (3) 

where throughput and cycle time are normalized with 
respect to the nominal capacity )C( 0 and the sum of raw 
processing times (RPT). The parameters a and b affect the 
curvature of the functions. Two questions have been 
designed to assist the planner to assign a value to a and b: 
What is the utility of a throughput that equals to 100% of 
the nominal capacity? What is the utility of a cycle time 
that equals to 3.5 times that of the raw processing time?  

 

Figure 4. Utility functions of throughput and cycle Time 

The total utility function, h(x, y), is defined as the weighted 
sum of functions f(x) and g(y) using an assigned weight w.  

)()(),( ygxfwyxh +⋅=     …(4) 

Figure 5 is a graph that shows the total utility in the z-axis 
of a 3-dimentional plot for w=2. Each horizontal cross 
section of the response surface represents an indifference 
curve between throughput and cycle time (also shown in the 
right panel). That is, the total utility of all points on an 
indifference curve (IDC) is the same.  

 
Figure 5. The total utility function and indifference curves 

The optimal portfolio and its optimal operation loading can 
be obtained by evaluating the total utility of all points in the 
option space, using both Figures 3 and 5, as follows. Each 
option curve can be regarded as a hyper surface in the 3-
dimentional space of Figure 5. The intersection between the 
hyper surface and the response surface of the total utility 
function is a hyper curve. The optimal operation loading is 
then the highest point of the hyper curve. This highest point 
can be solved mathematically by using the LaGrange 
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multiplier method as follows. The total utility function is 
regarded as the objective function to be maximized and the 
option curve as a constraint relating throughput and cycle 
time. For Equation 4, the objective function h(x, y) and the 
hyper surface for the constraint OCS(x, y) are of the forms: 

)y)(barccos(sin)e(wh(x,y) xa ⋅+−⋅= ⋅−1   …(5) 
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xnm
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⋅−

=
1     …(6) 

Once the optimal loading is determined for each portfolio, 
the maximum utility that can be achieved with each 
portfolio is also determined. Define the investment 
efficiency of a portfolio as the ratio of its maximum utility 
to its investment cost. The portfolio with the highest 
investment efficiency is considered optimal. 

We will now return to the issue of the weight w. Using the 
above procedure, an optimal loading level is determined 
using a required input of weight w between two utility 
functions. The weight is a subjective judgment of the 
relative utility between cycle time and throughput. As 
shown in Figure 6, if a weight of 2 is used, the resultant 
optimal point will be (x=0.940, y=3.05). The derivative of 
the OC at that point is equal to 14.606. Since the derivative 
of the OC can be interpreted as the relative utility between 
cycle time and throughput, a logical impasse now surfaces. 
That w equals to 2 means the utility of throughput is twice 
as important as that of cycle time. That the derivative 
equals to 14.606 means the utility of throughput is 9.28 
(= 1111

0 606.1421429000606.14RPTC −−−− ⋅⋅=⋅⋅ ) times more 
important than that of cycle time. In the following we will 
show the existence of an equilibrium weight that is inherent 
to the option curve of each portfolio.  

We will present two numerical examples; one starts with a 
small value of w and another with a large value of w, to 
layout a framework of analysis. Each example involves a 
number of iterations to compute the optimal operation 
loading. The procedure is: 
1. Iteration i = 1. Give an arbitrary initial weight w = w1. 
2. Compute the optimal loading Oi using wi as input. 

Calculate the derivative of the OC at Oi. Let the 
derivative be Di. 

3. Set wi+1 = 
iD

1
RPT

0C ⋅  

4. If |wi-wi-1| < ε, stop. Otherwise, set i = i + 1 and go to 
Step 2.   

The results for an initial weight of 1.0 and 8.0 are 
summarized in Table 1. In both examples, the weight wi 
converges to a value of approximately 5.29. This 
convergence value is called the equilibrium weight. 

Table 1. Convergence of the weight 
 W1 W2 W3 .... ..... W14 W15 W16 W17

Case1 1.0 13.793 3.1562 ...... ....... 5.2976 5.2927 5.2906 5.2916

Case2 8.0 4.2098 6.0255 ....... ..... 5.2922 5.2919 5.2917 5.294

4. CAPACITY SHARING AND BACKUP 

    In this section, we describe an application of the above 
decision model. Some modern plants have a twin-fab 
design. Two clean rooms are built side by side or stacked 
up one on top of another to share common utility facilities. 
In still some other occasions, plants are close to each other, 
which is the case in Taiwan. The bottleneck tools of two 
plants may not be the same at all times. The proximity of 
plants allows capacity sharing to take place. If tool capacity 
is shared between plants, the overall performance will be 
improved.  

If additional capacity of the bottleneck tools is obtained 
from a partner plant, the option curve shifts downward to 
the right (Figure 6). Suppose the current operation loading 
is at point O. With the borrowed capacity, either the 
throughput could be increased from 1ω  to 2ω  (point A), or 
the cycle time could be reduced from 1τ or 2τ  (point C), or 
any other points on the dotted curve will be achievable.  

Cycle
time

throughput
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O With
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capacity
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Figure 6. The effect of capacity sharing 

Table 2 shows the result obtained by applying the above 
analysis to a set of industry data. It is shown that if 20 hours 
of capacity of the bottleneck tool group is borrowed from 
the partner plant, the throughput would be increased by 52 
wafers per week, or the cycle time could be reduced by 10 
hours. This methodology provides an objective arbitration 
for capacity sharing between plants. 

Table 2. Effect of capacity sharing  
 Point O Point A Point C 

Throughput 29,000 29,052 29,000
Cycle time 883.4 883.4 873.9
WIP level 35,583 35,647 35,197

The economic benefit of increased throughput can be 
computed from the revenue that it brings in and the 
inventory cost of WIP (work-in-process). But, the benefit of 
cycle time improvement is a subjective matter. From the 
queuing theory it is known that a reduction in cycle time 
would affect the level of throughput and WIP. Therefore, 
we used an economic model to correlate the economic 
benefit of cycle time to that of throughput and WIP as 
follows. Let ),( ii τω  and ),( jj τω  be two points in the 

option space and ij ωω > . The value of cycle time 

reduction can be computed using the following formulas 
with average asking price (ASP) of processed wafers, 
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material cost (MC), production cost (PC), and an rate of 
return (r). 

r)(month/yea 12  :t throughpufrom Revenue ⋅⋅= )(ASP-PC-MCR ω

ji

iijj  -WICR -WICR

r)PC(MCWIPW

ττ −

−
=

⋅+⋅=

)()(
  reduction  timecycle of Value

2
IC    :costinventory  WIP  

Let r = .30, ASP = 1800, PC = 1000, and MC = 71.88, the 
value of cycle time reduction equals to approximately US $ 
40,000 per hour. It should be noted that this figure is 
derived from the condition of optimal loading. This 
information could be used as a reference in evaluating 
projects of cycle time reduction. 

5.  EFFECT OF PROCESS FLOW GRANULARITY 

There are two aspects of uncertainty in product demands. 
The product mixes may change over time and the 
bottleneck tool groups change as a result [3]. Another 
aspect of uncertainty has to do with products themselves. 
For medium- to long-term planning, products and their 
process flows are usually represented generically. The 
process flows may contain only key steps and machines. 
That is, the representation has a coarse granularity.  

We have studied the effect of process flow granularity on 
the accuracy of portfolio planning. We are interested in 
knowing whether planning with information of only key 
steps of the process flows is sufficiently accurate as 
compared with planning with all steps. The number of tool 
groups is used as a measure of the granularity. A process 
flow with all process steps specified has the highest level of 
granularity. If non-critical steps are deleted from the 
process flow, a new process flow with a lower granularity 
will be derived. The queuing delay at tool groups is chosen 
as the surrogate measure of planing accuracy. Let l,gD be 

the queuing delay of tool group g for planning granularity 
level l.  Figure 7 is the result of a case study. Originally, 
there are 101 tool groups. The horizontal axis shows the 
number of tool groups deleted. There are 10 granularity 
levels (l = 1 to 10 from the left). The vertical axis shows the 
average error of queuing delay between granularity levels, 
which is computed as 

∑
∈

−=
l

l
Gg

glgG DD 0,,
1error absolute average  

where lG is the set of tool groups remaining in granularity 
level l. The data shows that when as many as 50 tool groups 
are ignored in the process flows, the average error is 
approximately 0.1 hours, which corresponds to 5% error in 
cycle time. The error then increases more dramatically as 
the granularity level decreases further. Eventually, as the 
vast majority of tool groups are removed, the structure of 
the queuing network is destroyed. It is concluded that non-
critical tool groups have very slight effect on queuing delay 

estimation. Ignoring non-critical tool groups will increase 
the errors of estimation, but the errors are very slight. 
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Figure 7. Effect of process flow granularity 

6. DISCUSSIONS AND CONCLUSIONS 

This paper presents a comprehensive methodology for tool 
portfolio planning, covering four advanced issues of 
portfolio planning: portfolio optimization, economic 
analysis, decision-making, and robust configuration under 
uncertainty. Because portfolio selection is a multi-criteria 
decision-making problem, we have developed a decision 
model for portfolio optimization and to determine the 
optimal operating loading. This decision model can be 
applied to objectively arbitrate capacity sharing between 
plants and to evaluate the economic value of cycle time. 
Finally, we presented a method to analyze the effect of 
process flow granularity on the accuracy of portfolio 
planning to address the problem caused by the uncertainty 
in product demands. 
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